

VIVEK TUTORIALS

Practice Test [MODEL ANSWER]

Std: SSC (E.M) Subject: Mathematics I Time: 30Min
Date: 21/Apr/2019 chapter 2 Max Marks: 20

Q.1 Choose the correct alternative answer for each of the following questions:

1) Ans.
$$\frac{5}{x} = x^2+3$$

 $5 = x(x^2+3)$ has only variable x but maximum index is 3, so it is nit quadratic $x(x+5)=2$ has only variable x and maximum

index is 2, so it is quadratic. n-1=2n has only variable n, but maximum index is 1, so it is not quadratic.

$$\frac{1}{x^2}$$
(x+2)=x

x+2=x³ has only variable x but maximum index is 3 so it is not quadratic. Option (B) is correct

 Ans. As the roots of the equation x²+kx+k=0 are real and equal.

$$\therefore \Delta = b^2 - 4ac = 0$$

$$b^2-4ac = (k)^2-4(1)(k)$$

$$0 = k^2 - 4k$$

$$k(k-4)=0$$

3) Ans. Option (A) is correct as

$$x^2+4x=11+x^2$$

$$x^2 - x^2 + 4x - 11 = 0$$

But for a quadratic equation ax2+bx+c=0

 $a \neq 0$

4) Ans. (b)

 $x^2 + 2\sqrt{x} - 3 = 0$ is the only equation in which x has $\frac{1}{2}$ as exponent whereas a quadratic equation must have maximum power as 2. Therefore $x + 2\sqrt{x} - 3 = 0$ is not a quadratic equation.

Q.2 Complete the following Activities

1) Ans. In the equation 9y² + 5= 0 y is the only variable and maximum index of the variable is 2
 ∴ It is a quadratic equation.

2) Ans. In the equation $m^3 - 5m^2 + 4 = 0$ m is the only variable but maximum index of the variable is not 2.

Q.3 Solve the following questions

.. It is a quadratic equation.

2) Ans.

(i) Put
$$x = \frac{3}{2}$$
 in the polynomial $2x^2 - 7x + 6$
 $2x^2 - 7x + 6 = 2\left(\frac{3}{2}\right)^2 - 7\left(\frac{3}{2}\right) + 6$
 $= 2 \times \frac{9}{4} - \frac{21}{2} + 6$

$$=\frac{9}{2}-\frac{21}{2}+\frac{12}{2}=0$$

 $\therefore x = \frac{3}{2}$ is a solution of the equation.

(ii) Let
$$x = -2$$
 in $2x^2 - 7x + 6$

$$2x^{2} - 7x + 6 = 2(-2)^{2} - 7(-2) + 6$$
$$= 2 \times 4 + 14 + 6$$
$$= 28 \neq 0$$

 $\therefore x = -2$ is not a solution of the equation.

3) Ans.
$$3m^2 = 2m^2 - 9$$

$$\rightarrow 3m^2 - 2m^2 + 9 = 0$$

$$\rightarrow m^2 + 0m + 9 = 0$$

Comparing with the standard equation $ax^2 + bx + c = 0$

$$a = 1, b = 0, c = 9$$

Q.4 Solve the following questions

1) Ans.
$$x^2 + 5x = -(3 - x)$$

$$\rightarrow$$
 x² + 5x = -3 + x

$$\rightarrow x^2 + 5x + 3 - x = 0$$

$$\rightarrow x^2 + 4x + 3 = 0$$

Comparing with standard equation $ax^2 + bx + c = 0$

$$a = 1, b = 4, c = 3$$

2) Ans.
$$6\sqrt{3}x^2 + 7x = \sqrt{3}$$

$$\therefore 6\sqrt{3} x^2 + 7x - \sqrt{3} = 0$$

$$\therefore 6\sqrt{3}x^2 + 9x - 2x - \sqrt{3} = 0$$

$$\therefore 3\sqrt{3} x(2x + \sqrt{3}) - 1(2x + \sqrt{3}) = 0$$

$$(2x + \sqrt{3})(3\sqrt{3}x - 1) = 0$$

$$\therefore 2x + \sqrt{3} = 0$$
 or $3\sqrt{3}x - 1 = 0$

$$\therefore 2x = -\sqrt{3} \text{ or } 3\sqrt{3}x = 1$$

$$\therefore \quad x = -\frac{\sqrt{3}}{2} \quad \text{or} \quad x = \frac{1}{3\sqrt{3}}$$

 $\therefore -\frac{\sqrt{3}}{2}$ and $\frac{1}{3\sqrt{3}}$ are the roots of the given quadratic equation.

 $6\sqrt{3} \times -\sqrt{3} = -18$ -18 9 - 2 $9 = 3\sqrt{3} \times \sqrt{3}$

6